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Outline

We present a general Bayesian methodology for implementing
binary regression models
Our methods aims to

extend the approach described in [Durante(2019)] for the
Probit model with a Gaussian Prior
provide a competitive alternative to existing methods
[Polya-Gamma technique (Polson at al (2013)];
[Holmes and Held(2006)] )

Ingredients:

� The Unified Skew Normal (SUN) class of densities
� Scale mixtures of Gaussian distributions
� Kolmogorov distribution
� Gibbs sampler

2 / 35



Prequel

The Unified Skew-Normal density has been introduced by
[Arellano-Valle and Azzalini(2006)], but see also
[O’Hagan and Leonard(1976)] for a proto-Bayesian use.
Among several representations, it can be considered as a
multivariate Gaussian with linear constraints.

Y = ξ + diag1/2(Ω)Z |(U + τ > 0)

with [
Z
U

]
∼ Nd+m

([
0
0

]
,

[
Ω̄ ∆
∆′ Γ

])
,

ξ ∈ Rd ,τ ∈ Rm,Γ is a m-correlation matrix, Ω is a d-covariance

matrix, ∆ is d ×m matrix and Ω̄ = diag−
1
2 (Ω)Ωdiag−

1
2 (Ω).
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The density function

It includes the computation of two CDFs of a multivariate
Gaussian density

fY (y) = ϕΩ(y −ξ )
ΦΓ−∆′Ω̄−1∆(τ + ∆′Ω̄−1diag−

1
2 (Ω)(y −ξ ))

ΦΓ(τ)
,

τ = 0 =⇒ Skew-Normal family
∆ = 0 or m = 0 =⇒ Normal family
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A different representation

Y = ξ + diag
1
2 (Ω)Z |(T ≤ AZ +b) , (1)

with A ∈ Rd×m,b ∈ Rm.
This way, T ⊥⊥ Z and T ∼ Nm(0,Θ), with

Θ = diag−
1
2
(
Γ−∆′Ω̄−1∆

)(
Γ−∆′Ω̄−1∆

)
diag−

1
2
(
Γ−∆′Ω̄−1∆

)
,

A = diag−
1
2
(
Γ−∆′Ω̄−1∆

)
∆′Ω̄−1

and
b = diag−

1
2
(
Γ−∆′Ω̄−1∆

)
τ.
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SUN family and Probit model

[Durante(2019)] discovered a central role of the SUN density in
Bayesian probit models.
Starting from a normal prior for the coefficients β ∼ Np(ξ ,Ω) the
posterior for β after producing a probit likelihood, belongs to the
SUN family

β|y ,X ∼ SUNp,n (ξ
∗,Ω∗,∆∗,τ∗,Γ∗)

Remarks:

The previous stochastic representation can be suitably used
for posterior sampling

The algorithm is particularly efficient in the p > n case
[Botev(2017)]
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Extending the SUN family

We construct a larger class of densities, named perturbed SUN
(pSUN) via the replacement of ϕ and Φ with scale mixtures of
Gaussian densities.
This is done with the goal of finding a more general conjugacy in
the Bayesian analysis of binary regression models.
Assume that Z = diag1/2(W )R and T = diag1/2(V )S , with

V ∼ QV (·) ⊥⊥ S ∼ Nm(0,Θ)

W ∼ QW (·) ⊥⊥ R ∼ Nd(0, Ω̄),

The pSUN class is defined as the expression (1)

Y = ξ + diag
1
2 (Ω)Z |(T ≤ AZ +b) ,

with the above assumptions on Z and T . Then,

pSUNd ,m (QV ,Θ,A,b,QW ,Ω,ξ ) .
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The density of a pSUN

Let Y ∼ pSUNd ,m (QV ,Θ,A,b,QW ,Ω,ξ ) . Then

fY (y) = ϕΩ,QW
(y −ξ )

ΦΘ,QV

(
Adiag−

1
2 (Ω)(y −ξ ) +b

)
ΨQV ,Θ,A,QW ,Ω̄(b)

, (2)

with

ϕΣ,Q(u) =
∫
Rd

d

∏
i=1

(
W
− 1

2
i

)
φΣ

(
diag−

1
2 (W )u

)
dQ(W ) ,

ΦΣ,Q(u) =
∫
Rd

ΦΣ

(
diag−

1
2 (W )u

)
dQ(W ) ,

and

ΨQV ,Θ,A,QW ,Ω̄(b) = P(T −AZ ≤ b)

T ∼ ΦΘ,QV
(·)⊥⊥ Z ∼ ΦΩ̄,QW

(·)
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Some pSUN densities

Logit: top: N(0,1); V ∼ LK (·);W = 1,A = 3,b = 0

V ∼ LK (·);W = 1,A = 1.5,b = 0

Probit: bottom: N(0,1); V = W = 1,A = 3,b = 0

V = W = 1,A = 1.5,b = 0
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Some pSUN densities

top: Lapl(0,1) ; V ∼ LK (·);W ∼ Exp(0.5),A = 3,b = 0;

V ∼ LK (·);W ∼ Exp(0.5),A = 1.5,b = 0

bottom: Lapl(0,1) V = 1,W ∼ Exp(0.5),A = 3,b = 0;

V = 1,W ∼ Exp(0.5),A = 1.5,b = 0 10 / 35



The MGF of a pSUN

Assume MZ (u) (MGF of Z ) exists. Then, the MGF of Y is

MY (u) = eu
′ξMZ

(
diag

1
2 (Ω)u

) Ψ̃QV ,Θ,A,QW ,Ω̄

(
b,diag

1
2 (Ω)u

)
ΨQV ,Θ,A,QW ,Ω̄(b)

,

with

Ψ̃QV ,Θ,A,QW ,Ω̄ (b,k) = P(T −AZ̃k ≤ b)

T ∼ ΦΘ,QV
(·)⊥⊥ Z̃k , and Z̃k is the k-tilted distribution

[Siegmund(1976)] of Z ∼ ΦΩ̄,QW
(·)

that is

f
Z̃k

(x) =
ek
′x fZ (x)

MZ (k)
.

Maybe useful in variational Bayes.
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Sampling a pSUN

We adopted a Gibbs algorithm:

Key aspect: one must be able to sample from the f.c.’s W |Z
and V |T .

It is not always easy, and it depends on the specific values of
Θ, Ω̄, and the form of QW (·) and QV (·).

Relatively simple in the most popular versions of the Bayesian
binary regression.
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Sampling a pSUN

At time t:

Sample Vt+1 ∼ V |T = Tt

Sample Wt+1 ∼W |Z = Zt

In order to sample Zt+1,Tt+1 ∼ Z ,T |T ≤ AZ +b,Wt+1,Vt+1

do the following steps: set ΘV = diag1/2(V )Θdiag1/2(V ) and

Ω̄W = diag1/2(W )Ω̄diag1/2(W )

Set Σε = ΘVt+1 +AΩ̄Wt+1A
′

Sample ε ∼ TNm(−∞,−b,0,Σε )
Set Hµ = Ω̄Wt+1 A

′Σ−1
ε

Set HΣ = (I −HµA)Ω̄Wt+1

Sample Zt+1 ∼ Nd(Hµε,HΣ)
SetTt+1 = AZt+1− ε

=⇒ Yt+1 = ξ + diag1/2(Ω)Zt+1
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Linear Symmetric Binary Regression

Consider a general version of the model as

Yi |pi
ind∼ Be(pi ), ∀i = 1,2, . . . ,n; pi = Λ(η(Xi )) ,

Λ : R→ [0,1] is the link function,

η(·) is a calibration function,

Xi ∈ Rp is the i-th row of the design matrix X .

Typically, Λ(·) is a scalar CDF, symmetric about 0, and η(x) takes
the simple linear form, x ′β ; Call it a linear symmetric binary
regression model (LSBR).
Set Λn(x) = ∏

n
i=1 Λ(xi ) and Br = [2diag(r)− In] for r ∈ {0,1}n.

The likelihood function of a LSBR is

L(β ;y) = Λn(ByXβ ) .
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Conjugacy for Linear Symmetric Binary Regression (LSBR)

Theorem

Consider a Bayesian LSBR model and assume

β ∼ pSUNp,m(QV0 ,Θ,A,b,QW ,ξ ,Ω).

If the link function is of the form Λ(x) =
∫

∞

0 Φ
(

x√
v

)
dQV ∗(v),

β |Y = y ∼ pSUNp,m+n

(
QV0

Qn
V ∗ ,Θ

∗,A∗,

[
b

ByXξ

]
,QW ,ξ ,Ω

)
,

with

Θ∗ =

[
Θ 0m×n

0n×m In

]
;A∗ =

[
A 0m×p

0n×p ByXdiag−
1
2 (Ω)

]
,

and QV0
Qn
V ∗ ([x1,x2]′) = QV0

(x1)∏
n
i=1QV ∗(x2,i )
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Computation

In order to produce a posterior sample with the Gibbs
algorithm, one must be able to sample from the full
conditional distributions of V and W .

W : This is relatively simple when π(β ) either has an elliptical
structure or it has independent components. For example, the
SGH [Barndorff-Nielsen(1977)] class of priors satisfies the
elliptical constraint and corresponds to m = 0. Instead,
m = 1 =⇒ new skew version of the GH family.

V : It depends on the link function Λ(·). Simpler when Θ is
diagonal; (independently sample Vi |Ti i = 1,2, . . . ,n+m. This
happens, for example, when m = 0 or m = 1.
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Bayesian Logistic Regression

The popular logistic regression model is a special case of those
discussed in the previous Theorem

The logistic distribution admits a representation in terms of a
scale mixture of Gaussian distributions; see
[Andrews and Mallows(1974)] and [Stefanski(1991)].

In fact,

Ti |V0,i ∼ N(0,4V 2
0,i ) and V0,i ∼ K (·) =⇒ Ti ∼ Logis(0,1)

that is

fTi
(t) =

exp(−t)

(1 + exp(−t))2
t ∈ R.
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Kolmogorov’s distribution

We will use the logistic Kolmogorov distribution:

Vi = 4V 2
0,i , V0,i ∼ K (·)

We denote it by Vi ∼ LK(·); the density is

lk(v) =

v−
5
2

√
2π ∑

+∞

j=1

(
(2j−1)2π2−v

)
exp
(
− (2j−1)2π2

2v

)
0 < v ≤ v∗

∑
+∞

j=1(−1)j−1j2 exp
(
− j2v

2

)
v > v∗

for some v∗ > 0 ; see [Onorati and Liseo(2022)] for details. For
numerical reasons, we set v∗ ≈ 1.98 and truncate both series to the
first 15 terms.
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Comments

[Holmes and Held(2006)] have already used a very similar
representation within a data-augmentation Gibbs algorithm for
several models including logistic regression.

Our approach and the one in [Holmes and Held(2006)] share
some characteristics in the binary logistic case although we
introduced some improvements in terms of speed.

We do: V ,W |T ,Z and then T ,Z |V ,W
[Holmes and Held(2006)]: V ,W |T ,Z ; then T −AZ |Z ,V ,W
and then Z |T −AZ ,V ,W
where, in both cases, β = ξ + diag1/2(Ω)Z .
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Technical details

The hard step is “how to sample” from the f.c. of
V |T ,β ,W ,Y = V |T

Notice that the first m components of V |T are independent of
the last n ones, and they only depend on the prior distribution.

focus on the last n components of V |T : they are mutually
independent so one only needs to sample from
Vi |Ti , i = m+ 1,m+ 2, . . . ,m+n.

we adopt an acceptance-rejection algorithm.
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Simulation Study

Both in the probit and in the logit case:

Priors: pSUN with weakly informative hyper-parameters in the
spirit of Gelman et al. (2008) , i.e.

m = 0,ξ = 0p,Ω = diagonal matrix

=⇒ π(β ) will be unimodal and symmetric about the origin.
Probit model implies V1 = V2 = · · ·= Vn = 1.

We consider 3 different priors

A. a Gaussian prior (W1 = W2 = · · ·= Wp = 1) [Durante(2019)]

B. a multivariate Laplace with independent components

(W1,W2, . . .Wp
iid∼ Exp (1/2))

C. Dirichlet-Laplace prior [Bhattacharya et al. (2015], with a
discrete uniform prior on the Dirichlet parameter, in (0,1]
{1/300× j , j = 1,2, . . . ,300}.
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Simulation Study: Ω values (Probit case)

The diagonal components of Ω were obtained, adapting a
suggestion in Gelman et al.(2008)

Gaussian: ω11 = 100,ω22 = · · ·= ωpp = 42.25

Laplace with indep. components: ω11 = 100;ω22 = · · ·= ωpp = 6.25.
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Simulation Study: Ω values (Logit case)

Logit model implies V1,V2, . . .Vn
iid∼ K (·)

Centred Normal: ω11 = 256;ω22 = · · ·= ωpp = 25;

Laplace with indep. components: ω11 = 210.25;ω22 = · · ·= ωpp = 14.0625
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Simulation scheme: p = 10

for g = 1,2, . . . ,G

• sample each covariate value indep X
(g)
ij ∼ N(0,1) and

transform column of X (g) to have a s.d. = 0.5
for all model/prior combination
• if not DL, sample Σ(g ,h) ∼W otherwise set Σg ,h = I and α ∼ π(α)
sample β ∼ πh(β |Σg ,h)

• sample Y
(g ,h)
i

ind∼ Be(Λh(X
′(g)
i β

(g ,h)
True ))

• draw N values from the posterior distribution of β

• compute the empirical quantiles of level γ ∈ {5/100× j , j = 1,2, . . . ,19}
=⇒ evaluate the frequentist coverage comparing the quantiles with β

(g ,h)
True

number of iteration in the Gibbs sampler: 104
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Simulation Study: Ω values (Results)

Logit model Frequentist coverage of priors in repeated sampling:
Gaussian and Indep. Laplace
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Simulation Study: Ω values (Results)

Probit model Frequentist coverage of priors in repeated sampling:
Dirichlet-Laplace and Indep. Laplace

26 / 35



Cancer SAGE

Discussed in [Durante(2019)]: a p > n case:
n = 74 normal and cancerous biological tissues at 516 different
tags.
Of interest: to quantify the effects of gene expressions on the
probability of a cancerous tissue and predicting the status of new
tissues as a function of the gene expression.
Gene expressions standardized with mean 0 and σ = 0.5.
When p > n the prior input is decisive
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Cancer SAGE

Probit model: Posterior means of the 516 β coefficients + intercept.

Left: Durante’s prior; Gaussian prior Right: Laplace with independent

components (black), and Dirichlet-Laplace
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Cancer SAGE

Logit model: Posterior means of the 516 β coefficients + intercept.

Gaussian prior; Laplace with independent components Dirichlet-Laplace .
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Objective Bayes

The general expression of a pSUN prior for the β vector is

β ∼ pSUNm,p (QV ,Θ,A,b,QW ,ξ ,Ω)

The natural objective version is then obtained by setting

m QV Θ A b ξ

0 NA NA NA NA 0

QW and Ω are the only quantities to specify.

For example, the adaptation of a sort of g -prior for binary
responses (Marin & Robert, 2006) would correspond to
Ω = (X ′X )−1 and W1 = W2 = · · ·= Wp = w and
π(w) ∝ w−3/4.

A weakly informative prior can be obtained by mimicking the
approach described for the logit model in Gelman et al. (2008)
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Comparison with Polson et al. (2013)

with a small dataset (n = 100,p = 4):
Polya-Gamma alg. takes 13 seconds with a C + + code. our
algorithm is much slower [euphemism . . . ] (5 minutes with a
R code). However our ACF are much better
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Comparison with Polson et al. (2013)

with Cancer SAGE dataset (n = 74,p = 517):
Polya-Gamma alg. is four time slower than pSUN (103
minutes vs 25 minutes), and ACF are still better

32 / 35



Future development

Botev & L’Ecuyer (2015) have proposed an efficient method
for simulating from a multivariate truncated Student t
distribution. It works fine up to 100 dimensions

This approach can be useful in our context for evaluating the
normalizing constant of the posterior distribution. This can be
suitably used for two different goals

providing an exact i.i.d. sampler
model selection via Bayes factor

Make the algorithm faster in C++

Semiparametric generalisations (see Paolo’s poster)

Tobit models
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