# An extension of the Unified Skew-Normal family of distributions with application to Bayesian binary regression 

## Brunero Liseo

Sapienza Università di Roma
brunero.liseo@uniroma1.it

Joint work with Paolo Onorati

O’Bayes Conference, Santa Cruz (CA)

September $7^{\text {th }}, 2022$

## Outline

■ We present a general Bayesian methodology for implementing binary regression models

- Our methods aims to

■ extend the approach described in [Durante(2019)] for the Probit model with a Gaussian Prior
■ provide a competitive alternative to existing methods [Polya-Gamma technique (Polson at al (2013)]; [Holmes and Held(2006)] )

## Ingredients:

$\diamond$ The Unified Skew Normal (SUN) class of densities
$\diamond$ Scale mixtures of Gaussian distributions
$\diamond$ Kolmogorov distribution
$\diamond$ Gibbs sampler

## Prequel

The Unified Skew-Normal density has been introduced by [Arellano-Valle and Azzalini(2006)], but see also [O'Hagan and Leonard(1976)] for a proto-Bayesian use. Among several representations, it can be considered as a multivariate Gaussian with linear constraints.

$$
Y=\xi+\operatorname{diag}^{1 / 2}(\Omega) Z \mid(U+\tau>0)
$$

with

$$
\left[\begin{array}{l}
Z \\
U
\end{array}\right] \sim N_{d+m}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\bar{\Omega} & \Delta \\
\Delta^{\prime} & \Gamma
\end{array}\right]\right)
$$

$\xi \in \mathbb{R}^{d}, \tau \in \mathbb{R}^{m}, \Gamma$ is a $m$-correlation matrix, $\Omega$ is a $d$-covariance matrix, $\Delta$ is $d \times m$ matrix and $\bar{\Omega}=\operatorname{diag}^{-\frac{1}{2}}(\Omega) \Omega \operatorname{diag}^{-\frac{1}{2}}(\Omega)$.

## The density function

It includes the computation of two CDFs of a multivariate
Gaussian density

$$
f_{Y}(y)=\varphi_{\Omega}(y-\xi) \frac{\Phi_{\Gamma-\Delta^{\prime} \bar{\Omega}^{-1} \Delta}\left(\tau+\Delta^{\prime} \bar{\Omega}^{-1} \operatorname{diag}^{-\frac{1}{2}}(\Omega)(y-\xi)\right)}{\Phi_{\Gamma}(\tau)}
$$

$\tau=0 \Longrightarrow$ Skew-Normal family
$\Delta=0$ or $m=0 \Longrightarrow$ Normal family

## A different representation

$$
\begin{equation*}
\left.Y=\xi+\operatorname{diag}^{\frac{1}{2}}(\Omega) Z \right\rvert\,(T \leq A Z+b), \tag{1}
\end{equation*}
$$

with $A \in \mathbb{R}^{d \times m}, b \in \mathbb{R}^{m}$.
This way, $T \Perp Z$ and $T \sim N_{m}(0, \Theta)$, with

$$
\begin{gathered}
\Theta=\operatorname{diag}^{-\frac{1}{2}}\left(\Gamma-\Delta^{\prime} \bar{\Omega}^{-1} \Delta\right)\left(\Gamma-\Delta^{\prime} \bar{\Omega}^{-1} \Delta\right) \operatorname{diag}^{-\frac{1}{2}}\left(\Gamma-\Delta^{\prime} \bar{\Omega}^{-1} \Delta\right), \\
A=\operatorname{diag}^{-\frac{1}{2}}\left(\Gamma-\Delta^{\prime} \bar{\Omega}^{-1} \Delta\right) \Delta^{\prime} \bar{\Omega}^{-1}
\end{gathered}
$$

and

$$
b=\operatorname{diag}^{-\frac{1}{2}}\left(\Gamma-\Delta^{\prime} \bar{\Omega}^{-1} \Delta\right) \tau
$$

## SUN family and Probit model

[Durante(2019)] discovered a central role of the SUN density in Bayesian probit models.
Starting from a normal prior for the coefficients $\boldsymbol{\beta} \sim N_{p}(\xi, \Omega)$ the posterior for $\beta$ after producing a probit likelihood, belongs to the SUN family

$$
\boldsymbol{\beta} \mid y, X \sim \operatorname{SUN}_{p, n}\left(\xi^{*}, \Omega^{*}, \Delta^{*}, \tau^{*}, \Gamma^{*}\right)
$$

## Remarks:

- The previous stochastic representation can be suitably used for posterior sampling
- The algorithm is particularly efficient in the $p>n$ case [Botev(2017)]


## Extending the SUN family

We construct a larger class of densities, named perturbed SUN (pSUN) via the replacement of $\varphi$ and $\Phi$ with scale mixtures of Gaussian densities.
This is done with the goal of finding a more general conjugacy in the Bayesian analysis of binary regression models.
Assume that $Z=\operatorname{diag}^{1 / 2}(W) R$ and $T=\operatorname{diag}^{1 / 2}(V) S$, with

$$
\begin{array}{rll}
V \sim Q_{V}(\cdot) & \Perp & S \sim N_{m}(0, \Theta) \\
W \sim Q_{W}(\cdot) & \Perp & R \sim N_{d}(0, \bar{\Omega})
\end{array}
$$

The pSUN class is defined as the expression (1)

$$
\left.Y=\xi+\operatorname{diag}^{\frac{1}{2}}(\Omega) Z \right\rvert\,(T \leq A Z+b)
$$

with the above assumptions on $Z$ and $T$. Then,

$$
p S U N_{d, m}\left(Q_{V}, \Theta, A, b, Q_{W}, \Omega, \xi\right)
$$

## The density of a pSUN

Let $Y \sim p \operatorname{SUN}_{d, m}\left(Q_{V}, \Theta, A, b, Q_{w}, \Omega, \xi\right)$. Then

$$
\begin{equation*}
f_{Y}(y)=\varphi_{\Omega, Q_{W}}(y-\xi) \frac{\Phi_{\Theta, Q_{V}}\left(A \operatorname{diag}^{-\frac{1}{2}}(\Omega)(y-\xi)+b\right)}{\Psi_{Q_{V}, \Theta, A, Q_{W}, \bar{\Omega}}(b)} \tag{2}
\end{equation*}
$$

with

$$
\begin{aligned}
& \varphi_{\Sigma, Q}(u)=\int_{\mathbb{R}^{d}} \prod_{i=1}^{d}\left(W_{i}^{-\frac{1}{2}}\right) \phi_{\Sigma}\left(\operatorname{diag}^{-\frac{1}{2}}(W) u\right) d Q(W) \\
& \Phi_{\Sigma, Q}(u)=\int_{\mathbb{R}^{d}} \Phi_{\Sigma}\left(\operatorname{diag}^{-\frac{1}{2}}(W) u\right) d Q(W)
\end{aligned}
$$

and

$$
\begin{aligned}
\Psi_{Q_{V}, \Theta, A, Q_{W}, \bar{\Omega}}(b) & =\mathrm{P}(T-A Z \leq b) \\
T & \sim \Phi_{\Theta, Q_{V}}(\cdot) 山 Z \sim \Phi_{\bar{\Omega}, Q_{W}}(\cdot)
\end{aligned}
$$

## Some pSUN densities

Logit: top: $\mathrm{N}(0,1) ; V \sim L K(\cdot) ; W=1, A=3, b=0$
$V \sim L K(\cdot) ; W=1, A=1.5, b=0$



Probit: bottom: $\mathrm{N}(0,1) ; V=W=1, A=3, b=0$

## Some pSUN densities

$$
\begin{aligned}
& \text { top: } \operatorname{Lapl}(0,1) ; V \sim L K(\cdot) ; W \sim \operatorname{Exp}(0.5), A=3, b=0 ; \\
& V \sim \operatorname{LK}(\cdot) ; W \sim \operatorname{Exp}(0.5), A=1.5, b=0
\end{aligned}
$$



bottom: $\operatorname{Lapl}(0,1) V=1, W \sim \operatorname{Exp}(0.5), A=3, b=0$;

$$
V=1, W \sim \operatorname{Exp}(0.5), A=1.5, b=0
$$

## The MGF of a pSUN

Assume $M_{Z}(u)$ (MGF of $Z$ ) exists. Then, the MGF of $Y$ is

$$
M_{Y}(u)=e^{u^{\prime} \xi} M_{Z}\left(\operatorname{diag}^{\frac{1}{2}}(\Omega) u\right) \frac{\widetilde{\Psi}_{Q_{V}, \Theta, A, Q_{W}, \bar{\Omega}}\left(b, \operatorname{diag}^{\frac{1}{2}}(\Omega) u\right)}{\Psi_{Q_{V}, \Theta, A, Q_{W}, \bar{\Omega}}(b)}
$$

with

$$
\widetilde{\Psi}_{Q_{V}, \Theta, A, Q_{W}, \bar{\Omega}}(b, k)=\mathrm{P}\left(T-A \widetilde{Z}_{k} \leq b\right)
$$

$T \sim \Phi_{\Theta, Q_{V}}(\cdot) \Perp \widetilde{Z}_{k}$, and $\widetilde{Z}_{k}$ is the $k$-tilted distribution
[Siegmund(1976)] of $Z \sim \Phi_{\bar{\Omega}, Q_{W}}(\cdot)$
that is

$$
f_{\widetilde{Z}_{k}}(x)=\frac{e^{k^{\prime} x} f_{Z}(x)}{M_{Z}(k)} .
$$

## Sampling a pSUN

We adopted a Gibbs algorithm:
■ Key aspect: one must be able to sample from the f.c.'s $W \mid Z$ and $V \mid T$.
■ It is not always easy, and it depends on the specific values of $\Theta, \bar{\Omega}$, and the form of $Q_{W}(\cdot)$ and $Q_{V}(\cdot)$.

- Relatively simple in the most popular versions of the Bayesian binary regression.


## Sampling a pSUN

At time $t$ :

Sample $V_{t+1} \sim V \mid T=T_{t}$
Sample $W_{t+1} \sim W \mid Z=Z_{t}$
In order to sample $Z_{t+1}, T_{t+1} \sim Z, T \mid T \leq A Z+b, W_{t+1}, V_{t+1}$ do the following steps: set $\Theta_{V}=\operatorname{diag}^{1 / 2}(V) \Theta \operatorname{diag}^{1 / 2}(V)$ and $\bar{\Omega}_{W}=\operatorname{diag}^{1 / 2}(W) \bar{\Omega} \operatorname{diag}^{1 / 2}(W)$

$$
\text { Set } \Sigma_{\varepsilon}=\Theta_{V_{t+1}}+A \bar{\Omega}_{W_{t+1}} A^{\prime}
$$

Sample $\varepsilon \sim T N_{m}\left(-\infty,-b, 0, \Sigma_{\varepsilon}\right)$
Set $H_{\mu}=\bar{\Omega}_{W_{t+1}} A^{\prime} \Sigma_{\varepsilon}^{-1}$
Set $H_{\Sigma}=\left(I-H_{\mu} A\right) \bar{\Omega}_{W_{t+1}}$
Sample $Z_{t+1} \sim N_{d}\left(H_{\mu} \varepsilon, H_{\Sigma}\right)$
Set $T_{t+1}=A Z_{t+1}-\varepsilon$
$\Longrightarrow Y_{t+1}=\xi+\operatorname{diag}^{1 / 2}(\Omega) Z_{t+1}$

## Linear Symmetric Binary Regression

Consider a general version of the model as

$$
Y_{i} \mid p_{i} \stackrel{\text { ind }}{\sim} \operatorname{Be}\left(p_{i}\right), \quad \forall i=1,2, \ldots, n ; \quad p_{i}=\Lambda\left(\eta\left(X_{i}\right)\right),
$$

$■ \Lambda: \mathbb{R} \rightarrow[0,1]$ is the link function,

- $\eta(\cdot)$ is a calibration function,

■ $X_{i} \in \mathbb{R}^{p}$ is the $i$-th row of the design matrix $X$.
Typically, $\Lambda(\cdot)$ is a scalar CDF, symmetric about 0 , and $\eta(x)$ takes the simple linear form, $x^{\prime} \beta$; Call it a linear symmetric binary regression model (LSBR).
Set $\Lambda_{n}(x)=\prod_{i=1}^{n} \Lambda\left(x_{i}\right)$ and $B_{r}=\left[2 \operatorname{diag}(r)-I_{n}\right]$ for $r \in\{0,1\}^{n}$.
The likelihood function of a LSBR is

$$
L(\beta ; y)=\Lambda_{n}\left(B_{y} X \beta\right)
$$

## Conjugacy for Linear Symmetric Binary Regression (LSBR)

## Theorem

Consider a Bayesian LSBR model and assume

$$
\beta \sim p S U N_{p, m}\left(Q_{V_{0}}, \Theta, A, b, Q_{W}, \xi, \Omega\right)
$$

If the link function is of the form $\Lambda(x)=\int_{0}^{\infty} \Phi\left(\frac{x}{\sqrt{v}}\right) d Q_{V^{*}}(v)$,

$$
\beta \left\lvert\, Y=y \sim p \operatorname{SUN}_{p, m+n}\left(Q_{V_{0}} Q_{V^{*}}^{n}, \Theta^{*}, A^{*},\left[\begin{array}{c}
b \\
B_{y} X \xi
\end{array}\right], Q_{W}, \xi, \Omega\right)\right.,
$$

with

$$
\Theta^{*}=\left[\begin{array}{cc}
\Theta & 0_{m \times n} \\
0_{n \times m} & I_{n}
\end{array}\right] ; A^{*}=\left[\begin{array}{cc}
A & 0_{m \times p} \\
0_{n \times p} & B_{y} X \operatorname{diag}^{-\frac{1}{2}}(\Omega)
\end{array}\right],
$$

and $Q_{V_{0}} Q_{V^{*}}^{n}\left(\left[x_{1}, x_{2}\right]^{\prime}\right)=Q_{V_{0}}\left(x_{1}\right) \prod_{i=1}^{n} Q_{V^{*}}\left(x_{2, i}\right)$

## Computation

- In order to produce a posterior sample with the Gibbs algorithm, one must be able to sample from the full conditional distributions of $V$ and $W$.
- W: This is relatively simple when $\pi(\beta)$ either has an elliptical structure or it has independent components. For example, the SGH [Barndorff-Nielsen(1977)] class of priors satisfies the elliptical constraint and corresponds to $m=0$. Instead, $m=1 \Longrightarrow$ new skew version of the GH family.
- $V$ : It depends on the link function $\Lambda(\cdot)$. Simpler when $\Theta$ is diagonal; (independently sample $V_{i} \mid T_{i} i=1,2, \ldots, n+m$. This happens, for example, when $m=0$ or $m=1$.


## Bayesian Logistic Regression

- The popular logistic regression model is a special case of those discussed in the previous Theorem
- The logistic distribution admits a representation in terms of a scale mixture of Gaussian distributions; see [Andrews and Mallows(1974)] and [Stefanski(1991)].

In fact,

$$
T_{i} \mid V_{0, i} \sim N\left(0,4 V_{0, i}^{2}\right) \text { and } V_{0, i} \sim K(\cdot) \Longrightarrow T_{i} \sim \operatorname{Logis}(0,1)
$$

that is

$$
f_{T_{i}}(t)=\frac{\exp (-t)}{(1+\exp (-t))^{2}} \quad t \in \mathbb{R}
$$

## Kolmogorov's distribution

We will use the logistic Kolmogorov distribution:

$$
V_{i}=4 V_{0, i}^{2}, \quad V_{0, i} \sim K(\cdot)
$$

We denote it by $V_{i} \sim \mathrm{LK}(\cdot)$; the density is
$\operatorname{lk}(v)= \begin{cases}v^{-\frac{5}{2}} \sqrt{2 \pi} \sum_{j=1}^{+\infty}\left((2 j-1)^{2} \pi^{2}-v\right) \exp \left(-\frac{(2 j-1)^{2} \pi^{2}}{2 v}\right) & 0<v \leq v^{*} \\ \sum_{j=1}^{+\infty}(-1)^{j-1} j^{2} \exp \left(-\frac{j^{2} v}{2}\right) & v>v^{*}\end{cases}$
for some $v^{*}>0$; see [Onorati and Liseo(2022)] for details. For numerical reasons, we set $v^{*} \approx 1.98$ and truncate both series to the first 15 terms.

## Comments

■ [Holmes and Held(2006)] have already used a very similar representation within a data-augmentation Gibbs algorithm for several models including logistic regression.
■ Our approach and the one in [Holmes and Held(2006)] share some characteristics in the binary logistic case although we introduced some improvements in terms of speed.

- We do: $V, W \mid T, Z$ and then $T, Z \mid V, W$ [Holmes and Held(2006)]: $V, W \mid T, Z$; then $T-A Z \mid Z, V, W$ and then $Z \mid T-A Z, V, W$ where, in both cases, $\beta=\xi+\operatorname{diag}^{1 / 2}(\Omega) Z$.


## Technical details

The hard step is "how to sample" from the f.c. of $V|T, \beta, W, Y=V| T$

■ Notice that the first $m$ components of $V \mid T$ are independent of the last $n$ ones, and they only depend on the prior distribution.

- focus on the last $n$ components of $V \mid T$ : they are mutually independent so one only needs to sample from

$$
V_{i} \mid T_{i}, i=m+1, m+2, \ldots, m+n
$$

■ we adopt an acceptance-rejection algorithm.

## Simulation Study

Both in the probit and in the logit case:

- Priors: pSUN with weakly informative hyper-parameters in the spirit of Gelman et al. (2008), i.e.

$$
m=0, \xi=0_{p}, \Omega=\text { diagonal matrix }
$$

$\Longrightarrow \pi(\beta)$ will be unimodal and symmetric about the origin.
Probit model implies $V_{1}=V_{2}=\cdots=V_{n}=1$.
We consider 3 different priors
A. a Gaussian prior ( $W_{1}=W_{2}=\cdots=W_{p}=1$ ) [Durante(2019)]
B. a multivariate Laplace with independent components $\left(W_{1}, W_{2}, \ldots W_{p} \stackrel{\text { iid }}{\sim} \operatorname{Exp}(1 / 2)\right)$
C. Dirichlet-Laplace prior [Bhattacharya et al. (2015], with a discrete uniform prior on the Dirichlet parameter, in $(0,1]$ $\{1 / 300 \times j, j=1,2, \ldots, 300\}$.

## Simulation Study: $\Omega$ values (Probit case)

The diagonal components of $\Omega$ were obtained, adapting a suggestion in Gelman et al.(2008)

Gaussian:

$$
\omega_{11}=100, \omega_{22}=\cdots=\omega_{p p}=42.25
$$

Laplace with indep. components:

$$
\omega_{11}=100 ; \omega_{22}=\cdots=\omega_{p p}=6.25
$$

## Simulation Study: $\Omega$ values (Logit case)

## Logit model implies $V_{1}, V_{2}, \ldots V_{n} \stackrel{\text { iid }}{\sim} K(\cdot)$

Centred Normal:
Laplace with indep. components: $\quad \omega_{11}=210.25 ; \omega_{22}=\cdots=\omega_{p p}=14.0625$

## Simulation scheme: $p=10$

for $g=1,2, \ldots, G$

- sample each covariate value indep $X_{i j}^{(g)} \sim N(0,1)$ and transform column of $X^{(g)}$ to have a s.d. $=0.5$
for all model/prior combination
- if not DL, sample $\Sigma^{(g, h)} \sim W$ otherwise set $\Sigma_{g, h}=I$ and $\alpha \sim \pi(\alpha)$ sample $\beta \sim \pi_{h}\left(\beta \mid \Sigma_{g, h}\right)$
- sample $Y_{i}^{(g, h)} \stackrel{i n d}{\sim} \operatorname{Be}\left(\Lambda_{h}\left(X_{i}^{\prime(g)} \beta_{\text {True }}^{(g, h)}\right)\right)$
- draw $N$ values from the posterior distribution of $\beta$
- compute the empirical quantiles of level $\gamma \in\{5 / 100 \times j, j=1,2, \ldots, 19\}$
$\Longrightarrow$ evaluate the frequentist coverage comparing the quantiles with $\beta_{\text {True }}^{(g, h)}$ number of iteration in the Gibbs sampler: $10^{4}$


## Simulation Study: $\Omega$ values (Results)

Logit model Frequentist coverage of priors in repeated sampling: Gaussian and Indep. Laplace



## Simulation Study: $\Omega$ values (Results)

Probit model Frequentist coverage of priors in repeated sampling: Dirichlet-Laplace and Indep. Laplace



## Cancer SAGE

Discussed in [Durante(2019)]: a $p>n$ case:
$n=74$ normal and cancerous biological tissues at 516 different tags.
Of interest: to quantify the effects of gene expressions on the probability of a cancerous tissue and predicting the status of new tissues as a function of the gene expression.
Gene expressions standardized with mean 0 and $\sigma=0.5$. When $p>n$ the prior input is decisive

## Cancer SAGE




Probit model: Posterior means of the $516 \beta$ coefficients + intercept. Left: Durante's prior; Gaussian prior Right: Laplace with independent components (black), and Dirichlet-Laplace

## Cancer SAGE



Logit model: Posterior means of the $516 \beta$ coefficients + intercept. Gaussian prior; Laplace with independent components Dirichlet-Laplace .

## Objective Bayes

The general expression of a pSUN prior for the $\boldsymbol{\beta}$ vector is

$$
\boldsymbol{\beta} \sim p S U N_{m, p}\left(Q_{V}, \Theta, A, b, Q_{W}, \xi, \Omega\right)
$$

The natural objective version is then obtained by setting

| $m$ | $Q_{V}$ | $\Theta$ | $A$ | $b$ | $\xi$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | NA | NA | NA | NA | 0 |

■ $Q_{W}$ and $\Omega$ are the only quantities to specify.

- For example, the adaptation of a sort of $g$-prior for binary responses (Marin \& Robert, 2006) would correspond to $\Omega=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}$ and $W_{1}=W_{2}=\cdots=W_{p}=w$ and $\pi(w) \propto w^{-3 / 4}$.
- A weakly informative prior can be obtained by mimicking the approach described for the logit model in Gelman et al. (2008)


## Comparison with Polson et al. (2013)

- with a small dataset ( $n=100, p=4$ ):

Polya-Gamma alg. takes 13 seconds with a $C++$ code. our algorithm is much slower [euphemism ...] (5 minutes with a $R$ code). However our ACF are much better




pSUN Comp 1





## Comparison with Polson et al. (2013)

■ with Cancer SAGE dataset ( $n=74, p=517$ ):
Polya-Gamma alg. is four time slower than pSUN (103 minutes vs 25 minutes), and ACF are still better


## Future development

■ Botev \& L'Ecuyer (2015) have proposed an efficient method for simulating from a multivariate truncated Student $t$ distribution. It works fine up to 100 dimensions
■ This approach can be useful in our context for evaluating the normalizing constant of the posterior distribution. This can be suitably used for two different goals

■ providing an exact i.i.d. sampler

- model selection via Bayes factor
- Make the algorithm faster in C++
- Semiparametric generalisations (see Paolo's poster)
- Tobit models


## References I


D. F. Andrews and C. L. Mallows.

Scale mixtures of normal distributions.
J. Roy. Statist. Soc. Ser. B, 36:99-102, 1974.

Reinaldo B. Arellano-Valle and Adelchi Azzalini.
On the unification of families of skew-normal distributions.
Scand. J. Statist., 33(3):561-574, 2006.
O. Barndorff-Nielsen.

Exponentially decreasing distributions for the logarithm of particle size.
In Proc. Royal Soc. Series A, Math. and Phys. Sci., , pages 401-409. The Royal Society, London, 1977.
Z. I. Botev.

The normal law under linear restrictions: simulation and estimation via minimax tilting.
J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(1):125-148, 2017.

ISSN 1369-7412.
doi: 10.1111/rssb. 12162.
URL https://doi.org/10.1111/rssb. 12162.


Daniele Durante.
Conjugate Bayes for probit regression via unified skew-normal distributions.
Biometrika, 106(4):765-779, 2019.
Chris C. Holmes and Leonhard Held.
Bayesian auxiliary variable models for binary and multinomial regression.
Bayesian Anal., 1(1):145-168, 2006.

## References II



Anthony O'Hagan and Tom Leonard.
Bayes estimation subject to uncertainty about parameter constraints. Biometrika, 63(1):201-203, 041976.

Paolo Onorati and Brunero Liseo.
Random Number Generator for the Kolmogorov Distribution. arXiv2208.13598, 2022.
URL https://arxiv.org/abs/2208. 13598.
D. Siegmund.

Importance sampling in the Monte Carlo study of sequential tests.
Ann. Statist., 4(4):673-684, 1976.
Leonard A. Stefanski.
A normal scale mixture representation of the logistic distribution. Statist. Probab. Lett., 11(1):69-70, 1991.

