An extension of the Unified Skew-Normal family of distributions with application to Bayesian binary regression

Brunero Liseo

Sapienza Università di Roma

brunero.liseo@uniroma1.it

Joint work with Paolo Onorati

O'Bayes Conference, Santa Cruz (CA)

September 7th, 2022

Outline

- We present a general Bayesian methodology for implementing binary regression models
- Our methods aims to
 - extend the approach described in [Durante(2019)] for the Probit model with a Gaussian Prior
 - provide a competitive alternative to existing methods [Polya-Gamma technique (Polson at al (2013)]; [Holmes and Held(2006)])

Ingredients:

- ◊ The Unified Skew Normal (SUN) class of densities
- ◊ Scale mixtures of Gaussian distributions
- Kolmogorov distribution
- Gibbs sampler

Prequel

The Unified Skew-Normal density has been introduced by [Arellano-Valle and Azzalini(2006)], but see also [O'Hagan and Leonard(1976)] for a proto-Bayesian use. Among several representations, it can be considered as a multivariate Gaussian with linear constraints.

$$Y = \xi + \operatorname{diag}^{1/2}(\Omega) Z | (U + \tau > 0)$$

with

$$\begin{bmatrix} Z\\ U \end{bmatrix} \sim N_{d+m} \left(\begin{bmatrix} 0\\ 0 \end{bmatrix}, \begin{bmatrix} \bar{\Omega} & \Delta\\ \Delta' & \Gamma \end{bmatrix} \right),$$

 $\xi \in \mathbb{R}^d, \tau \in \mathbb{R}^m, \Gamma$ is a *m*-correlation matrix, Ω is a *d*-covariance matrix, Δ is $d \times m$ matrix and $\overline{\Omega} = \operatorname{diag}^{-\frac{1}{2}}(\Omega)\Omega \operatorname{diag}^{-\frac{1}{2}}(\Omega)$.

It includes the computation of two CDFs of a multivariate Gaussian density

$$f_{Y}(y) = \varphi_{\Omega}(y - \xi) \frac{\Phi_{\Gamma - \Delta' \bar{\Omega}^{-1} \Delta}(\tau + \Delta' \bar{\Omega}^{-1} \mathrm{diag}^{-\frac{1}{2}}(\Omega)(y - \xi))}{\Phi_{\Gamma}(\tau)},$$

 $\tau = 0 \implies$ Skew-Normal family $\Delta = 0$ or $m = 0 \implies$ Normal family

A different representation

$$Y = \xi + \operatorname{diag}^{\frac{1}{2}}(\Omega) Z | (T \le AZ + b), \qquad (1)$$

with $A \in \mathbb{R}^{d \times m}, b \in \mathbb{R}^m$. This way, $T \perp \perp Z$ and $T \sim N_m(0, \Theta)$, with

$$\begin{split} \Theta &= \operatorname{diag}^{-\frac{1}{2}} \left(\Gamma - \Delta' \bar{\Omega}^{-1} \Delta \right) \left(\Gamma - \Delta' \bar{\Omega}^{-1} \Delta \right) \operatorname{diag}^{-\frac{1}{2}} \left(\Gamma - \Delta' \bar{\Omega}^{-1} \Delta \right), \\ A &= \operatorname{diag}^{-\frac{1}{2}} \left(\Gamma - \Delta' \bar{\Omega}^{-1} \Delta \right) \Delta' \bar{\Omega}^{-1} \end{split}$$

and

$$b = \operatorname{diag}^{-\frac{1}{2}} \left(\Gamma - \Delta' \bar{\Omega}^{-1} \Delta \right) \tau.$$

[Durante(2019)] discovered a central role of the SUN density in Bayesian probit models.

Starting from a normal prior for the coefficients $\beta \sim N_p(\xi, \Omega)$ the posterior for β after producing a probit likelihood, belongs to the SUN family

$$\boldsymbol{eta}|\boldsymbol{y},\boldsymbol{X}\sim SUN_{p,n}(\boldsymbol{\xi}^*,\Omega^*,\Delta^*, au^*,\Gamma^*)$$

Remarks:

- The previous stochastic representation can be suitably used for posterior sampling
- The algorithm is particularly efficient in the p > n case [Botev(2017)]

Extending the SUN family

We construct a larger class of densities, named perturbed SUN (pSUN) via the replacement of φ and Φ with scale mixtures of Gaussian densities.

This is done with the goal of finding a more general conjugacy in the Bayesian analysis of binary regression models.

Assume that $Z = \operatorname{diag}^{1/2}(W)R$ and $T = \operatorname{diag}^{1/2}(V)S$, with

$$egin{aligned} & V \sim Q_V(\cdot) & \perp & S \sim N_m(0,\Theta) \ & W \sim Q_W(\cdot) & \perp & R \sim N_d(0,ar{\Omega}), \end{aligned}$$

The pSUN class is defined as the expression (1)

$$Y = \xi + \operatorname{diag}^{\frac{1}{2}}(\Omega) Z | (T \le AZ + b),$$

with the above assumptions on Z and T. Then,

 $pSUN_{d,m}(Q_V,\Theta,A,b,Q_W,\Omega,\xi).$

The density of a pSUN

Let
$$Y \sim pSUN_{d,m}(Q_V,\Theta,A,b,Q_W,\Omega,\xi)$$
. Then

$$f_Y(y) = \varphi_{\Omega,Q_W}(y-\xi) \frac{\Phi_{\Theta,Q_V}\left(A \operatorname{diag}^{-\frac{1}{2}}(\Omega)(y-\xi)+b\right)}{\Psi_{Q_V,\Theta,A,Q_W,\bar{\Omega}}(b)}, \quad (2)$$

with

$$\begin{split} \varphi_{\Sigma,Q}(u) &= \int_{\mathbb{R}^d} \prod_{i=1}^d \left(W_i^{-\frac{1}{2}} \right) \phi_{\Sigma} \left(\operatorname{diag}^{-\frac{1}{2}}(W) \, u \right) dQ(W) \,, \\ \Phi_{\Sigma,Q}(u) &= \int_{\mathbb{R}^d} \Phi_{\Sigma} \left(\operatorname{diag}^{-\frac{1}{2}}(W) \, u \right) dQ(W) \,, \end{split}$$

and

$$egin{aligned} \Psi_{Q_V,\Theta,\mathcal{A},Q_W,ar{\Omega}}(b) &= \mathrm{P}(T-\mathcal{A}Z\leq b) \ && \mathcal{T}\sim\Phi_{\Theta,Q_V}(\cdot) \perp\!\!\!\perp Z\sim\Phi_{ar{\Omega},Q_W}(\cdot) \end{aligned}$$

Some pSUN densities

Logit: top: N(0,1); $V \sim LK(\cdot)$; W = 1, A = 3, b = 0 $V \sim LK(\cdot)$; W = 1, A = 1.5, b = 0

Probit: bottom: N(0,1); V = W = 1, A = 3, b = 0

9 / 35

Some pSUN densities

top: Lapl(0,1); $V \sim LK(\cdot)$; $W \sim Exp(0.5), A = 3, b = 0$; $V \sim LK(\cdot)$; $W \sim Exp(0.5), A = 1.5, b = 0$

bottom: Lapl(0,1) $V = 1, W \sim Exp(0.5), A = 3, b = 0;$ $V = 1, W \sim Exp(0.5), A = 1.5, b = 0$

The MGF of a pSUN

Assume $M_Z(u)$ (MGF of Z) exists. Then, the MGF of Y is $M_Y(u) = e^{u'\xi} M_Z \left(\operatorname{diag}^{\frac{1}{2}}(\Omega) u \right) \frac{\widetilde{\Psi}_{Q_V,\Theta,A,Q_W,\bar{\Omega}} \left(b, \operatorname{diag}^{\frac{1}{2}}(\Omega) u \right)}{\Psi_{Q_V,\Theta,A,Q_W,\bar{\Omega}}(b)},$

with

$$\widetilde{\Psi}_{Q_V,\Theta,A,Q_W,\overline{\Omega}}(b,k) = \mathrm{P}(T - A\widetilde{Z}_k \leq b)$$

 $T \sim \Phi_{\Theta,Q_V}(\cdot) \perp \perp \widetilde{Z}_k$, and \widetilde{Z}_k is the *k*-tilted distribution [Siegmund(1976)] of $Z \sim \Phi_{\overline{\Omega},Q_W}(\cdot)$ that is

$$f_{\widetilde{Z}_k}(x) = \frac{e^{k' \times} f_Z(x)}{M_Z(k)}.$$

We adopted a Gibbs algorithm:

- Key aspect: one must be able to sample from the f.c.'s W|Z and V|T.
- It is not always easy, and it depends on the specific values of $\Theta, \overline{\Omega}$, and the form of $Q_W(\cdot)$ and $Q_V(\cdot)$.
- Relatively simple in the most popular versions of the Bayesian binary regression.

Sampling a pSUN

At time t:

Sample $V_{t+1} \sim V | T = T_t$ Sample $W_{t+1} \sim W | Z = Z_t$ In order to sample $Z_{t+1}, T_{t+1} \sim Z, T \mid T \leq AZ + b, W_{t+1}, V_{t+1}$ do the following steps: set $\Theta_V = \text{diag}^{1/2}(V)\Theta \text{diag}^{1/2}(V)$ and $\bar{\Omega}_{W} = \operatorname{diag}^{1/2}(W) \bar{\Omega} \operatorname{diag}^{1/2}(W)$ Set $\Sigma_{\varepsilon} = \Theta_{V_{\varepsilon+1}} + A \overline{\Omega}_{W_{\varepsilon+1}} A'$ Sample $\varepsilon \sim TN_m(-\infty, -b, 0, \Sigma_{\varepsilon})$ Set $H_{\mu} = \bar{\Omega}_{W_{t+1}} A' \Sigma_{\varepsilon}^{-1}$ Set $H_{\Sigma} = (I - H_{\mu}A)\Omega_{W_{\tau+1}}$ Sample $Z_{t+1} \sim N_d(H_\mu \varepsilon, H_\Sigma)$ Set $T_{t+1} = AZ_{t+1} - \varepsilon$ $\implies Y_{t+1} = \xi + \operatorname{diag}^{1/2}(\Omega) Z_{t+1}$

Linear Symmetric Binary Regression

Consider a general version of the model as

$$Y_i | p_i \stackrel{\text{ind}}{\sim} Be(p_i), \quad \forall i = 1, 2, \dots, n; \qquad p_i = \Lambda(\eta(X_i)),$$

• $\Lambda:\mathbb{R}\to [0,1]$ is the link function,

• $\eta(\cdot)$ is a calibration function,

• $X_i \in \mathbb{R}^p$ is the *i*-th row of the design matrix X.

Typically, $\Lambda(\cdot)$ is a scalar CDF, symmetric about 0, and $\eta(x)$ takes the simple linear form, $x'\beta$; Call it a linear symmetric binary regression model (LSBR).

Set $\Lambda_n(x) = \prod_{i=1}^n \Lambda(x_i)$ and $B_r = [2 \operatorname{diag}(r) - I_n]$ for $r \in \{0, 1\}^n$. The likelihood function of a LSBR is

 $L(\beta; y) = \Lambda_n(B_y X \beta).$

Conjugacy for Linear Symmetric Binary Regression (LSBR)

Theorem

Consider a Bayesian LSBR model and assume

$$eta \sim extsf{pSUN}_{p,m}(Q_{V_0}, \Theta, A, b, Q_W, \xi, \Omega).$$

If the link function is of the form $\Lambda(x) = \int_0^\infty \Phi\left(\frac{x}{\sqrt{v}}\right) dQ_{V^*}(v)$,

$$\beta|Y = y \sim pSUN_{p,m+n}\left(Q_{V_0}Q_{V^*}^n, \Theta^*, A^*, \begin{bmatrix}b\\B_yX\xi\end{bmatrix}, Q_W, \xi, \Omega\right),$$

with

$$\Theta^* = \begin{bmatrix} \Theta & 0_{m \times n} \\ 0_{n \times m} & I_n \end{bmatrix}; A^* = \begin{bmatrix} A & 0_{m \times p} \\ 0_{n \times p} & B_y X \operatorname{diag}^{-\frac{1}{2}}(\Omega) \end{bmatrix},$$

and $Q_{V_0} Q_{V^*}^n([x_1, x_2]') = Q_{V_0}(x_1) \prod_{i=1}^n Q_{V^*}(x_{2,i})$

Computation

- In order to produce a posterior sample with the Gibbs algorithm, one must be able to sample from the full conditional distributions of V and W.
- W: This is relatively simple when π(β) either has an elliptical structure or it has independent components. For example, the SGH [Barndorff-Nielsen(1977)] class of priors satisfies the elliptical constraint and corresponds to m = 0. Instead, m = 1 ⇒ new skew version of the GH family.
- V: It depends on the link function $\Lambda(\cdot)$. Simpler when Θ is diagonal; (independently sample $V_i | T_i i = 1, 2, ..., n + m$. This happens, for example, when m = 0 or m = 1.

Bayesian Logistic Regression

- The popular logistic regression model is a special case of those discussed in the previous Theorem
- The logistic distribution admits a representation in terms of a scale mixture of Gaussian distributions; see [Andrews and Mallows(1974)] and [Stefanski(1991)].

In fact,

 $T_i | V_{0,i} \sim N(0, 4V_{0,i}^2)$ and $V_{0,i} \sim K(\cdot) \Longrightarrow T_i \sim Logis(0,1)$

that is

$$f_{\mathcal{T}_i}(t)=rac{\exp(-t)}{(1+\exp(-t))^2} \quad t\in\mathbb{R}.$$

Kolmogorov's distribution

We will use the logistic Kolmogorov distribution:

$$V_i = 4 V_{0,i}^2 , \ V_{0,i} \sim K(\cdot)$$

We denote it by $V_i \sim LK(\cdot)$; the density is

$$lk(v) = \begin{cases} v^{-\frac{5}{2}} \sqrt{2\pi} \sum_{j=1}^{+\infty} \left((2j-1)^2 \pi^2 - v \right) \exp\left(-\frac{(2j-1)^2 \pi^2}{2v} \right) & 0 < v \le v^* \\ \sum_{j=1}^{+\infty} (-1)^{j-1} j^2 \exp\left(-\frac{j^2 v}{2} \right) & v > v^* \end{cases}$$

for some $v^* > 0$; see [Onorati and Liseo(2022)] for details. For numerical reasons, we set $v^* \approx 1.98$ and truncate both series to the first 15 terms.

Comments

- [Holmes and Held(2006)] have already used a very similar representation within a data-augmentation Gibbs algorithm for several models including logistic regression.
- Our approach and the one in [Holmes and Held(2006)] share some characteristics in the binary logistic case although we introduced some improvements in terms of speed.
- We do: V, W|T, Z and then T, Z|V, W[Holmes and Held(2006)]: V, W|T, Z; then T - AZ|Z, V, Wand then Z|T - AZ, V, Wwhere, in both cases, $\beta = \xi + \text{diag}^{1/2}(\Omega)Z$.

The hard step is "how to sample" from the f.c. of $V|T, \beta, W, Y = V|T$

- Notice that the first *m* components of V|T are independent of the last *n* ones, and they only depend on the prior distribution.
- focus on the last *n* components of V|T: they are mutually independent so one only needs to sample from V_i|T_i, i = m+1, m+2,...,m+n.
- we adopt an acceptance-rejection algorithm.

Simulation Study

Both in the probit and in the logit case:

 Priors: pSUN with weakly informative hyper-parameters in the spirit of Gelman et al. (2008), i.e.

 $m = 0, \xi = 0_p, \Omega =$ diagonal matrix

 $\implies \pi(\beta)$ will be unimodal and symmetric about the origin. **Probit model implies** $V_1 = V_2 = \cdots = V_n = 1$. We consider 3 different priors

- A. a Gaussian prior ($W_1 = W_2 = \cdots = W_p = 1$) [Durante(2019)]
- **B** a multivariate Laplace with independent components $(W_1, W_2, \dots, W_p \stackrel{iid}{\sim} \operatorname{Exp}(1/2))$
- C Dirichlet-Laplace prior [Bhattacharya et al. (2015], with a discrete uniform prior on the Dirichlet parameter, in (0,1] {1/300 × j, j = 1,2,...,300}.

The diagonal components of Ω were obtained, adapting a suggestion in Gelman et al.(2008)

Gaussian: Laplace with indep. components: $\omega_{11} = 100, \omega_{22} = \cdots = \omega_{pp} = 42.25$ $\omega_{11} = 100; \omega_{22} = \cdots = \omega_{pp} = 6.25.$

Simulation Study: Ω values (Logit case)

Logit model implies $V_1, V_2, \ldots V_n \overset{\text{iid}}{\sim} K(\cdot)$

Centred Normal: Laplace with indep. components: $\omega_{11} = 256; \omega_{22} = \dots = \omega_{pp} = 25;$ $\omega_{11} = 210.25; \omega_{22} = \dots = \omega_{pp} = 14.0625$ for $g = 1, 2, \ldots, G$

• sample each covariate value indep $X_{ij}^{(g)} \sim N(0,1)$ and transform column of $X^{(g)}$ to have a s.d. = 0.5 for all model/prior combination

• if not DL, sample $\Sigma^{(g,h)} \sim W$ otherwise set $\Sigma_{g,h} = I$ and $\alpha \sim \pi(\alpha)$ sample $\beta \sim \pi_h(\beta | \Sigma_{g,h})$

• sample
$$Y_i^{(g,h)} \stackrel{ind}{\sim} Be(\Lambda_h(X_i'^{(g)}\beta_{True}^{(g,h)}))$$

- draw N values from the posterior distribution of β
- compute the empirical quantiles of level $\gamma \in \{5/100 imes j, j=1,2,\ldots,19\}$
- \implies evaluate the frequentist coverage comparing the quantiles with $eta_{True}^{(g,h)}$

number of iteration in the Gibbs sampler: 10⁴

Simulation Study: Ω values (Results)

Logit model Frequentist coverage of priors in repeated sampling: Gaussian and Indep. Laplace

Simulation Study: Ω values (Results)

Probit model Frequentist coverage of priors in repeated sampling: Dirichlet-Laplace and Indep. Laplace

Discussed in [Durante(2019)]: a p > n case:

n = 74 normal and cancerous biological tissues at 516 different tags.

Of interest: to quantify the effects of gene expressions on the probability of a cancerous tissue and predicting the status of new tissues as a function of the gene expression.

Gene expressions standardized with mean 0 and $\sigma = 0.5$.

When p > n the prior input is decisive

Cancer SAGE

Probit model: Posterior means of the 516 β coefficients + intercept. Left: Durante's prior; Gaussian prior Right: Laplace with independent components (black), and Dirichlet-Laplace

Cancer SAGE

Logit model: Posterior means of the 516 β coefficients + intercept. Gaussian prior; Laplace with independent components Dirichlet-Laplace .

Objective Bayes

The general expression of a pSUN prior for the eta vector is

 $\beta \sim pSUN_{m,p}(Q_V, \Theta, A, b, Q_W, \xi, \Omega)$

The natural objective version is then obtained by setting

m	Q_V	Θ	Α	b	ξ
0	NA	NA	NA	NA	0

- Q_W and Ω are the only quantities to specify.
- For example, the adaptation of a sort of *g*-prior for binary responses (Marin & Robert, 2006) would correspond to $\Omega = (\mathbf{X}'\mathbf{X})^{-1}$ and $W_1 = W_2 = \cdots = W_p = w$ and $\pi(w) \propto w^{-3/4}$.
- A weakly informative prior can be obtained by mimicking the approach described for the logit model in Gelman et al. (2008)

Comparison with Polson et al. (2013)

with a small dataset (n = 100, p = 4):
 Polya-Gamma alg. takes 13 seconds with a C + + code. our algorithm is much slower [euphemism ...] (5 minutes with a R code). However our ACF are much better

Comparison with Polson et al. (2013)

 with Cancer SAGE dataset (n = 74, p = 517): Polya-Gamma alg. is four time slower than pSUN (103 minutes vs 25 minutes), and ACF are still better

32 / 35

Future development

- Botev & L'Ecuyer (2015) have proposed an efficient method for simulating from a multivariate truncated Student t distribution. It works fine up to 100 dimensions
- This approach can be useful in our context for evaluating the normalizing constant of the posterior distribution. This can be suitably used for two different goals
 - providing an exact i.i.d. sampler
 - model selection via Bayes factor
- Make the algorithm faster in C++
- Semiparametric generalisations (see Paolo's poster)
- Tobit models

References I

D. F. Andrews and C. L. Mallows

Scale mixtures of normal distributions. J. Roy. Statist. Soc. Ser. B, 36:99–102, 1974.

Reinaldo B. Arellano-Valle and Adelchi Azzalini.

On the unification of families of skew-normal distributions. Scand. J. Statist., 33(3):561–574, 2006.

O. Barndorff-Nielsen.

Exponentially decreasing distributions for the logarithm of particle size. In Proc. Royal Soc. Series A, Math. and Phys. Sci., pages 401–409. The Royal Society, London, 1977.

Z. I. Botev.

The normal law under linear restrictions: simulation and estimation via minimax tilting. J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(1):125–148, 2017. ISSN 1369-7412. doi: 10.1111/rssb.12162.

URL https://doi.org/10.1111/rssb.12162.

Daniele Durante.

Conjugate Bayes for probit regression via unified skew-normal distributions. *Biometrika*, 106(4):765–779, 2019.

Chris C. Holmes and Leonhard Held.

Bayesian auxiliary variable models for binary and multinomial regression. *Bayesian Anal.*, 1(1):145–168, 2006.

References II

Anthony O'Hagan and Tom Leonard.

Bayes estimation subject to uncertainty about parameter constraints. *Biometrika*, 63(1):201–203, 04 1976.

Paolo Onorati and Brunero Liseo.

Random Number Generator for the Kolmogorov Distribution. arXiv2208.13598, 2022. URL https://arxiv.org/abs/2208.13598.

D. Siegmund.

Importance sampling in the Monte Carlo study of sequential tests. Ann. Statist., 4(4):673–684, 1976.

Leonard A. Stefanski.

A normal scale mixture representation of the logistic distribution. *Statist. Probab. Lett.*, 11(1):69–70, 1991.